Plexin signaling selectively regulates the stereotyped pruning of corticospinal axons from visual cortex.

نویسندگان

  • Lawrence K Low
  • Xiao-Bo Liu
  • Regina L Faulkner
  • Jeffrey Coble
  • Hwai-Jong Cheng
چکیده

Neurons in the developing CNS tend to send out long axon collaterals to multiple target areas. For these neurons to attain specific connections, some of their axon collaterals are subsequently pruned-a process called stereotyped axon pruning. One of the most striking examples of stereotyped pruning in the CNS is the pruning of corticospinal tract (CST) axons. The long CST collaterals from layer V neurons of the visual and motor cortices are differentially pruned during development. Here we demonstrate that select plexins and neuropilins, which serve as coreceptors for semaphorins, are expressed in visual cortical neurons at the time when CST axon collaterals are stereotypically pruned. By analyzing mutant mice, we find that the pruning of visual, but not motor, CST axon collaterals depends on plexin-A3, plexin-A4, and neuropilin-2. Expression pattern study suggests that Sema3F is a candidate local cue for the pruning of visual CST axons. Using electron microscopic analysis, we also show that visual CST axon collaterals form synaptic contacts in the spinal cord before pruning and that the unpruned collaterals in adult mutant mice are unmyelinated and maintain their synaptic contacts. Our results indicate that the stereotyped pruning of the visual and motor CST axon collaterals is differentially regulated and that this specificity arises from the differential expression of plexin receptors in the cortex.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stereotyped axon pruning via plexin signaling is associated with synaptic complex elimination in the hippocampus.

Plexin signaling is required for stereotyped pruning of long axon collaterals in the vertebrate CNS; however, a cellular basis for plexins on stereotyped pruning has not been determined. Using quantitative electron microscopy and immunocytochemistry, we found that infrapyramidal mossy fiber axon collaterals form transient synaptic complexes with basal dendrites of CA3 pyramidal cells in the ear...

متن کامل

The RacGAP β2-Chimaerin Selectively Mediates Axonal Pruning in the Hippocampus

Axon pruning and synapse elimination promote neural connectivity and synaptic plasticity. Stereotyped pruning of axons that originate in the hippocampal dentate gyrus (DG) and extend along the infrapyramidal tract (IPT) occurs during postnatal murine development by neurite retraction and resembles axon repulsion. The chemorepellent Sema3F is required for IPT axon pruning, dendritic spine remode...

متن کامل

Stereotyped Pruning of Long Hippocampal Axon Branches Triggered by Retraction Inducers of the Semaphorin Family

Like naturally occurring neuronal cell death, stereotyped pruning of long axon branches to temporary targets is a widespread regressive phenomenon in the developing mammalian brain that helps sculpt the pattern of neuronal connections. The mechanisms controlling stereotyped pruning are, however, poorly understood. Here, we provide evidence that semaphorins, activating the Plexin-A3 receptor, fu...

متن کامل

Topographic specificity of corticospinal connections formed in explant coculture.

The corticospinal pathway connects layer V pyramidal neurons in discrete regions of the sensorimotor cortex to topographically matching targets in the spinal cord. In rodents initial pathway errors occur transiently during early postnatal development, such that visual cortical axons project inappropriately into the corticospinal tract. Nevertheless, only sensorimotor axons form corticospinal co...

متن کامل

Plexin a-semaphorin-1a reverse signaling regulates photoreceptor axon guidance in Drosophila.

While it is well established that Semaphorin family proteins function as axon guidance ligands in invertebrates and vertebrates, several recent studies indicate that the Drosophila Semaphorin-1a (Sema1a), a transmembrane Semaphorin, can also function as a receptor during neural development. The regulator of Sema1a reverse signaling, however, remains unknown. In this study, we show that like Sem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 105 23  شماره 

صفحات  -

تاریخ انتشار 2008